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Abstract
Systems subjected to holonomic constraints follow quite complicated dynamics
that could not be described easily with Hamiltonian or Lagrangian dynamics.
The influence of holonomic constraints in equations of motions is taken into
account by using Lagrange multipliers. Finding the value of the Lagrange
multipliers allows us to compute the forces induced by the constraints and
therefore, to integrate the equations of motions of the system. Computing
analytically the Lagrange multipliers for a constrained system may be a
difficult task that depends on the complexity of systems. For complex systems
it is, most of the time, impossible to achieve. In computer simulations,
some algorithms using iterative procedures estimate numerically Lagrange
multipliers or constraint forces by correcting the unconstrained trajectory. In
this work, we provide an analytical computation of the Lagrange multipliers
for a set of linear holonomic constraints with an arbitrary number of bonds
of constant length. In the appendix explicit formulae are shown for Lagrange
multipliers for systems having 1, 2, 3, 4 and 5 bonds of constant length, linearly
connected.

PACS numbers: 02.30.Gp, 05.20.−y, 05.10.−a

1. Introduction

The characteristic time scales associated with intramolecular motions are around 10–100 times
shorter than the characteristic time scales associated with translational and rotational degrees
of freedom of the molecule. In molecular dynamic computations a convenient way to handle
the multiple timescale in equation of motions is to treat covalent bonds between atoms as
rigid; this procedure introduces constraints on equations of motions; the use of the Lagrange
multipliers method allows us to integrate the equations of motion [1].

From a technical point of view, the Lagrange multipliers method is used in SHAKE
and RATTLE algorithms: the constrained trajectories of the systems are computed from
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unconstrained trajectories, by using an iterative algorithm that allows us to estimate
numerically the Lagrange multipliers [2–4]. These algorithms are very efficient and quite
convenient. Nevertheless, a closed analytical computation of the Lagrange multipliers is
interesting on its own on a theoretical ground and can also be used to improve the iterative
estimations done in SHAKE and RATTLE algorithms.

The equations of motions of the constrained dynamics are derived as follows. For a set
of holonomic constraints, noted as σα ≡ 0, one defines a constrained Lagrangian Lc[q, q̇] as

Lc[q, q̇] = L[q, q̇] −
∑

α

λασα(q, q̇), (1)

where L[q, q̇] is the Lagrangian of the unconstrained systems and λα the set of Lagrange
multipliers. The equations of motions are given by

∂

∂t

∂L′

∂q̇
= ∂L′

∂q
(2)

which may also be written as

miq̈i = Fi +
∑

α

λα

∂σα

∂qi

= Fi +
∑

α

Gi;α, (3)

where the constraint forces are defined by Gi;α . Since holonomic constraints are conserved
quantities, by requiring that the second time derivatives of all σα vanish, we obtain a set of
closed equations that allows us to compute the Lagrange multipliers. We have

∂σ̇α

∂t
=

∑
i

1

mi


Fi +

∑
β

Gi;β


 ∇iσα +

∑
i,j

q̇i q̇j∇i,j σα

= Kα + Cα +
∑

β

Zαβλβ = 0, (4)

where we have set


Kα =
∑

i

1

mi

Fi · ∇iσα

Cα =
∑
i,j

q̇i q̇j∇i,j σα

Zαβ =
∑

i

1

mi

∇iσα · ∇iσβ .

(5)

Then, Lagrange multipliers are given by finding the inverse of the Z-matrix, as

λβ = −
∑

α

(Z−1)βα(Kα + Cα). (6)

Obviously, the structure of the Z-matrix is closely related to the geometrical features of
molecules, its computation can be quite complicated and depends on the system.

In this work, by computing the inverse of the Z-matrix, we provide an analytical result for
holonomic constraints involved in the dynamic of linear molecules (polymers, etc) or having
a linear sequence in its structure (branched polymers, etc). For such systems, the holonomic
constraints can be read as

σα(rα, rα−1) ≡ (rα − rα−1)
2 − a2 = 0, (7)

where rα are the coordinates of the atom numbered α in the linear sequence of the molecule
and a the length of the bond between atoms α and α − 1. N is the number of holonomic
constraints; these constraints involve N bonds and N + 1 atoms.
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In the next section, we provide a closed analytical computation of the Z−1-matrix for the
linear holonomic constraints given by equation (7).

2. Analytical computation of Lagrange multipliers for linear holonomic constraints

We set rα − rα−1 = aûα , where ûα is the unitary bond vector linking the atom numbered
α − 1 to atom α; the linear holonomic constraints equation (7) gives

∇iσα = 2a(δi,α − δi,α−1)ûα, (8)

where we use the Kronecker symbol δn,p. The force acting on atom i due to all holonomic
constraints is Gi = ∑

α Gi;α and we found easily that∑
i

Gi = 0.

This may be easily verified for linear holonomic constraints.
Thus, for a set of linear holonomic constraints, the Z-matrix is given by

Zαβ = 2a2

m

∑
i

(δi,α − δi,α−1)(δi,β − δi,β−1)ûαûβ

= 4a2

m

(
−1

2
(ûα−1 · ûα)δα,β+1 + δα,β − 1

2
(ûβ−1 · ûβ)δα,β−1

)
. (9)

In the following, we set

γα = 1
2 ûα−1 · ûα and Z̃αβ = −γαδα,β+1 + δα,β − γβδα,β−1. (10)

In appendix, computations for N = 1, 2, 3, 4 and 5 are given explicitly. With the linear
holonomic constraints the Z-matrix is a banded symmetric matrix. To compute the inverse
matrix we take into account the properties of Z̃. The inverse matrix is built by a sequence
of multiplications on the right and the left in such a way that the identity matrix appears
progressively on the diagonal. More precisely, according to equation (10), if we perform the
transform

Z̃ −→ Bt
1A

t
1Z̃A1B1 = Z̃(1) (11)

with matrix A1 and B1 defined by

(A1)ij = δi,j + γ2δi,1δ2,j and (B1)ij = δi,j +


 1√

1 − γ 2
2

− 1


 δi,2δ2,j (12)

then, the 2 × 2 identity matrix appears in Z̃(1) for 1 � i � 2 and 1 � j � 2. The
matrix multiplications by A1 and At

1 result in vanishing the non-diagonal coefficient (i.e.
Z̃12 = Z̃21 = −γ2), while matrix multiplications by B1 and Bt

1 scale to 1 the diagonal
coefficient

(
At

1Z̃A1
)

22. The matrix Z̃(1) is similar to the original matrix Z̃, with γ2 and γ3

transformed as
γ2 −→ γ ′

2 = 0

γ3 −→ γ ′
3 = γ3√

1 − γ 2
2

(13)

because of equation (11).
We are then in a position to build the identity matrix from Z̃, by transformations similar

to equation (11). The matrix Z̃(n) is computed from Z̃(n−1) by making

Z̃(n) = Bt
nA

t
nZ̃

(n−1)AnBn. (14)
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With a convenient choice of the matrix An and Bn, we will finally obtain Z̃(N−1) = IN and
therefore, we will have built a matrix C such as

CtZ̃C = IN with C =
N−1∏
n=1

(AnBn) (15)

and thus

Z̃−1 = CCt . (16)

To this end, taking into account the structure of equation (13) for γ ′
3, we define the sequence

�n by

�2
n = 1 − γ 2

n

�2
n−1

(17)

with γ1 = 0,�1 = 1 and, for convenient reasons, γN+1 = 0, that gives �N+1 = 1. With these
notations the matrices An and Bn are given by

(An)ij = δi,j +
γn+1

�n

δi,nδ(n+1),j

(Bn)ij = δi,j +

(
1

�n+1
− 1

)
δi,(n+1)δ(n+1),j .

(18)

From the definition of matrices An and Bn and with equation (16), we may easily compute
determinants as

Det(An) = 1; Det(Bn) = 1

�n+1

and

Det(Z̃−1) =
N−1∏
n=1

1

�2
n+1

= 1

Det(Z̃)
. (19)

Det(Z̃) is closely related to the metric determinant that is used in computations of ensemble
averages [5–7].

Equations (16) and (17) allow us to compute the Z̃−1 matrix coefficients, the matrix is
symmetric Z̃−1)ij = Z̃−1)ji , and after some algebra we found


For i = j : Z̃−1)ii = 1

�2
i


1 +

N∑
p=i+1

p∏
m=i+1

(
1

�2
m

− 1

)


For i < j : Z̃−1)ij = 1

�2
i

[
j∏

n=i+1

γn

�2
n

] 
1 +

N∑
p=j+1

p∏
m=j+1

(
1

�2
m

− 1

)
 .

(20)

With equations (10) and (20), we may verify that Z̃−1Z̃ = IN . Equations (19) and (20) are
the main results of this paper.

According to equation (6), we have to compute Kα and Cα to achieve the analytical
computation of the Lagrange multipliers. With equations (5) and (8), we found

Kα = 2a

m
(F α − F α−1) · ûα (21)

and

Cα = 2

m2
(pα − pα−1)

2 (22)
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with the momentum of atoms, pα = mvα = mṙα and notations defined previously. Lagrange
multipliers are then given by applying equation (6).

So far, we have considered that all atoms, involved in the set of holonomic constraints,
have the same mass m and the length of each bond is equal to a. We consider now that
the sequence of atoms mass is {mi}i∈[0,N] and the length of bonds are {ai}i∈[1,N]. Then, the
momentum of atoms is now pα = mαvα = mαṙα and equation (8) becomes

∇iσα = 2aα(δi,α − δi,α−1)ûα. (23)

Therefore, the Z-matrix is now given by


Zαβ = −να(ûα−1 · ûα)δα,β+1 + ωαδα,β − νβ(ûβ−1 · ûβ)δα,β−1

να = −2aα−1aα

mα−1

ωα = 2a2
α

(
1

mα−1
+

1

mα

)
.

(24)

Equation (24) is similar to equation (9). We may transform equation (24) to equation (10)
with the help of a diagonal matrix D, according to

Z̃ = DZD (25)

with

Dij = 1√
ωi

δij . (26)

Then, Z̃ is again given by equation (10), but with

γα =
√

mαmα−2

(mα−1 + mα)(mα−1 + mα−2)
(ûα−1 · ûα), (27)

where inertia parameters of bonds appear explicitly (the canonical partition function of freely
jointed chains depends on inertia parameters of the bonds as defined in [8]). One may also
note that if mα = m, equation (27) corresponds to equation (10).

The inverse of the Z-matrix is now given by

Z−1 = DZ̃−1D = D(CCt)D (28)

with equations (27), (17) and (20); and Kα and Cα are given by

Kα = 2aα

(
F α

mα

− F α−1

mα−1

)
· ûα (29)

and

Cα = 2

(
pα

mα

− pα−1

mα−1

)2

. (30)

3. Discussion

From an analytical point of view, an interesting result is given by the computation of the
determinant of Z̃ (equation (19)). For holonomic constraints, this determinant is known as
the metric determinant; and for non-Hamiltonian dynamical systems [5, 6, 9] it can be related
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to the Jacobian determinant, some ensemble averages can be formulated with the help of this
determinant [5, 6, 10]. According to computations done in [11], we obtain

2N−1
∫ 1

2

0

N∏
n=2

dγn

√
Det(Z̃−1) = 2N−1

∫ 1
2

0

N∏
n=2

dγn

1√
Det(Z̃)

= [N−1]He[N]

(
1

2
; 3

2
; 1

4
, . . . ,

1

4

)
, (31)

where [N−1]He[N] is the multiple hypergeometric function defined in [8], related to the canonical
partition function of freely jointed chains. In particular, for N = 2, equation (31) is equivalent
to the elementary relation

2
∫ 1

2

0

dγ2√
1 − γ 2

2

= 2F1

(
1

2
,

1

2
; 3

2
; 1

4

)
= 2 arcsin

(
1

2

)
. (32)

In [8], we have shown that the multiple hypergeometric function [N−1]He[N] is defined for
any mass sequence; equation (31) may therefore be extended to any mass sequence, and the
multiple hypergeometric function [N−1]He[N] must be evaluated at a point defined by the inertia
parameters of the coupling between bonds [8]. The inertia parameter of the coupling between
bonds α and α − 1 is given by

xα = mαmα−2

(mα−1 + mα)(mα−1 + mα−2)
. (33)

This parameter appears explicitly in equation (27), so in the integral too (one may also note
that if mα = m, for all α, then we have xα = 1/4). For any mass sequence, the relation
equivalent to equation (31) is∫ √

x2

0
dγ2 . . .

∫ √
xN

0
dγN

√
Det(Z̃−1) =

(
N∏

n=2

x1/2
α

)
[N−1]He[N]

(
1

2
; 3

2
; {xi}i∈[2,N]

)
(34)

with γα given by equation (27). Equation (34) can be considered as an integral definition of the
multiple hypergeometric function [N−1]He[N]; this multiple hypergeometric function is quite
complicated; an iterative approximation scheme, called independent motions approximation
(IMA), is described in [8].

From the point of view of the physical chemistry, the main purpose of this paper was
to compute analytically the Lagrange multipliers for a set of linear holonomic constraints in
view of applications to molecular simulations or statistical physics of complex systems. For
applications of these analytical results in molecular simulation, the main drawback is that
the number of coefficients in the Z̃−1-matrix, that have to be computed and stored, scales as
N2 (the matrix is fully filled, see the appendix for some examples), N being the number of
bonds linearly connected in the molecule. Therefore, for practical implementations, this brute
force method of computing Lagrange multipliers is certainly not as efficient as SHAKE or
RATTLE algorithms, at least when N is rather large. Another point that one should keep in
mind in trying to implement these analytical results in a computer code is that, because of Cα ,
velocities (or momentum) contribute to Lagrange multipliers. This may rise to some technical
problems in the Verlet-velocity algorithm and in constant temperature molecular dynamics
computations, since forces at t + δt have to be computed to obtain the velocity at t + δt

[1, 2, 4]. Nevertheless, clever uses of these analytical results may certainly be used to improve
the efficiency and accuracy of RATTLE algorithms; for instance, when many bonds verify
ûα−1 · ûα � 1.
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On general grounds, despite the complexity of analytical formulae of Z̃−1 given by
equation (20), we believe that the analytical results presented in this work are of some interest,
since matrix similar to Z̃ appears frequently in many models or theories in one dimension or
with nearest neighbours’ interactions (spin models, harmonic chains, etc).

Appendix. Lagrange multipliers for N = 1, 2, 3, 4 and 5

In this appendix, we give explicitly the analytical formulae for linear holonomic constraints
that correspond to N = 1, 2, 3, 4 and 5 bonds. To obtain analytical results for the matrix Z̃−1,
we compute firstly �2

n from the recursive relation in equation (17),


�2
2 = 1 − γ 2

2

�2
3 = 1 − γ 2

2 − γ 2
3

1 − γ 2
2

�2
4 = 1 − γ 2

2 − γ 2
3 − γ 2

4

(
1 − γ 2

2

)
1 − γ 2

2 − γ 2
3

�2
5 = 1 − γ 2

2 − γ 2
3 − γ 2

4

(
1 − γ 2

2

) − γ 2
5

(
1 − γ 2

2 − γ 2
3

)
1 − γ 2

2 − γ 2
3 − γ 2

4

(
1 − γ 2

2

) .

(A.1)

The computation of Z̃−1 for N = 1, 2, 3, 4 and 5 is done by using equation (20).

• N = 1
For N = 1, Z̃ = Z̃−1 = (1) and, following equations (20) and (21), we have

K1 = 2a

m
(F 1 − F 0) · û1 and C1 = 2

m2
(p1 − p0)

2. (A.2)

Then, the Lagrange multiplier is

λ1 = 1

2a

[
(F 1 − F 0) · û1 +

1

ma
(p1 − p0)

2

]
(A.3)

the constraint force acting on atom numbered 1 is given by

G1 = −λ1∇1σ1 = −
[
(F 1 − F 0) · û1 +

1

ma
(p1 − p0)

2

]
û1 (A.4)

and the force acting on atom 0 is G0 = −G1.
• N = 2

For N = 2, we have

Z̃ =
(

1 −γ2

−γ2 1

)
and Z̃−1 = 1

1 − γ 2
2

(
1 γ2

γ2 1

)
(A.5)

therefore, with γ2 = û1 · û2/2, Lagrange multipliers are given by


λ1 = 1

2a
(
1 − (û1 · û2)2

4

)[
(F 1 − F 0) · û1 +

1

ma
(p1 − p0)

2

+
1

2
(û1 · û2)

[
(F 2 − F 1) · û2 +

1

ma
(p2 − p1)

2

] ]

λ2 = 1

2a
(
1 − (û1 · û2)2

4

)[
1

2
(û1 · û2)

[
(F 1 − F 0) · û1 +

1

ma
(p1 − p0)

2

]

+ (F 2 − F 1) · û2 +
1

ma
(p2 − p1)

2

]
.

(A.6)
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The forces acting on atoms are


G0 = −2aλ1û1

G1 = 2aλ1û1 − 2aλ2û2

G2 = 2aλ2û2

(A.7)

• N = 3
With N = 3, matrices Z̃ and Z̃−1 are given by

Z̃ =

 1 −γ2 0

−γ2 1 −γ3

0 −γ3 1


 (A.8)

and

Z̃−1 = 1

1 − γ 2
2 − γ 2

3




1 − γ 2
3 γ2 γ2γ3

γ2 1 γ3

γ2γ3 γ3 1 − γ 2
2


 . (A.9)

As for N = 1, following equations (20) and (21), for 1 � i � 3,Ki and Ci are given by

Ki = 2a

m
(F i − F i−1) · ûi and Ci = 2

m2
(pi − pi−1)

2. (A.10)

Then using equations (6), (A.9) and (A.10) we may compute Lagrange multipliers and
forces acting on atoms



G0 = −2aλ1û1

G1 = 2aλ1û1 − 2aλ2û2

G2 = 2aλ2û2 − 2aλ3û3

G3 = 2aλ3û3.

(A.11)

The complicated part of the force being held in Lagrange multipliers.
• N = 4

For N = 4, we have

Z̃ =




1 −γ2 0 0
−γ2 1 −γ3 0

0 −γ3 1 −γ4

0 0 −γ4 1


 (A.12)

and the matrix coefficients of Z̃−1 are given by

Z̃−1 =

1

1 − γ 2
2 − γ 2

3 − γ 2
4

(
1 − γ 2

2

)



1 − γ 2
4 − γ 2

3 γ2
(
1 − γ 2

4

)
γ2γ3 γ2γ3γ4

1 − γ 2
4 γ3 γ3γ4

1 − γ 2
2

(
1 − γ 2

2

)
γ4

1 − γ 2
2 − γ 2

3


 .

(A.13)
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Ki and Ci are given by equation (A.10), but 1 � i � 4 and forces by


G0 = −2aλ1û1

G1 = 2aλ1û1 − 2aλ2û2

G2 = 2aλ2û2 − 2aλ3û3

G3 = 2aλ3û3 − 2aλ4û4

G4 = 2aλ4û4,

(A.14)

where Lagrange multipliers are computed by using equation (A.13).
• N = 5

For N = 5, the Z̃-matrix is

Z̃ =




1 −γ2 0 0 0
−γ2 1 −γ3 0 0

0 −γ3 1 −γ4 0
0 0 −γ4 1 −γ5

0 0 0 −γ5 1


 (A.15)

and after some algebra using equation (20), we find

Z̃−1 = 1

1 − γ 2
2 − γ 2

3 − γ 2
4

(
1 − γ 2

2

) − γ 2
5

(
1 − γ 2

2 − γ 2
3

)



1 − γ 2
5 − γ 2

4 γ2
(
1 − γ 2

5 − γ 2
4

)
γ2γ3

(
1 − γ 2

5

)
γ2γ3γ4 γ2γ3γ4γ5

− γ 2
3

(
1 − γ 2

5

)
1 − γ 2

5 − γ 2
4 γ3

(
1 − γ 2

5

)
γ3γ4 γ3γ4γ5(

1 − γ 2
2

)(
1 − γ 2

5

)
γ4

(
1 − γ 2

2

)
γ4γ5

(
1 − γ 2

2

)
1 − γ 2

2 − γ 2
3 γ5

(
1 − γ 2

2 − γ 2
3

)
1 − γ 2

2 − γ 2
3

− γ 2
4

(
1 − γ 2

2

)




.

(A.16)

Then, Lagrange multipliers are obtained as previously.

The computations done for N = 4 and 5 show how the complexity of Lagrange multipliers
grows with the number of holonomic constraints. In equations (A.13) and (A.16), the
equivalence of both directions of labelling atoms, for linear holonomic constraints, appears
explicitly in the structure of the matrix.
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